MATH 54 - HINTS TO HOMEWORK 3

PEYAM TABRIZIAN

Here are a couple of hints to Homework 3! Enjoy :)

SECTION 3.1: Introduction to determinants

3.1.9, 3.1.13. Always try to look for a row/column full of zeros! May Bomberman be with you :)
3.1.19, 3.1.20. What you're asked to do is: compute the determinants of the first matrix and of the second matrix and compare them. Also, explain how to obtain the second matrix from the first using a row-operation!
3.1.37. $\operatorname{No}, \operatorname{det}(5 A)=5^{2} \operatorname{det}(A)=25 \operatorname{det}(A)$

3.1.40.

(a) F (it's the same, not the negative)
(b) F (product, not sum)

Section 3.2: Properties of determinants
3.2.1. Interchanging 2 rows results in $\mathrm{a}-\operatorname{sign}$ in the determinant!
3.2.5, 3.2.7. Just row-reduce the matrices until the determinant of the reduced matrix is easier to find!
3.2.21, 2.3.21. A matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
3.2.27.
(a) T? I think the book uses the term 'row-replacement' to mean: " add k times a row to another row".
(b) \mathbf{F} (not true for any echelon form, what about the reduced row-echelon form?)
(c) $\mathbf{T}(A$ is not invertible)
(d) \mathbf{F}
3.2.28.
(a) \mathbf{T} (basically because $(-1)(-1)=1$)
(b) \mathbf{F}
(c) \mathbf{F} (just means the columns are linearly dependent)
(d) $\mathbf{F}\left(\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)\right)$
3.2.31, 3.2.33, 3.2.34, 3.2.35, 3.2.36. All you need to use is the fact that $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$.

Date: Thursday, June 28th, 2012.
3.2.39. Use the facts that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B), \operatorname{det}(k A)=k^{3} \operatorname{det}(A), \operatorname{det}\left(A^{T}\right)=$ $\operatorname{det}(A), \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$ and $\operatorname{det}\left(A^{k}\right)=\operatorname{det}(A)^{k}$.

SECTION 3.3: Cramer's Rule, volume, and linear transformations
For all those problems, all you need to do is imitate the techniques presented in the book! This section will not be on the exam!
3.3.19. $\left|\begin{array}{ll}5 & 6 \\ 2 & 4\end{array}\right|$

